5,182 research outputs found

    Design, fabrication, and experimental validation of novel flexible silicon-based dry sensors for electroencephalography signal measurements

    Full text link
    © 2014 IEEE. Many commercially available electroencephalography (EEG) sensors, including conventional wet and dry sensors, can cause skin irritation and user discomfort owing to the foreign material. The EEG products, especially sensors, highly prioritize the comfort level during devices wear. To overcome these drawbacks for EEG sensors, this paper designs Societe Generale de Surveillance S A c(SGS)-certified, silicon-based dry-contact EEG sensors (SBDSs) for EEG signal measurements. According to the SGS testing report, SBDSs extract does not irritate skin or induce noncytotoxic effects on L929 cells according to ISO10993-5. The SBDS is also lightweight, flexible, and nonirritating to the skin, as well as capable of easily fitting to scalps without any skin preparation or use of a conductive gel. For forehead and hairy sites, EEG signals can be measured reliably with the designed SBDSs. In particular, for EEG signal measurements at hairy sites, the acicular and flexible design of SBDS can push the hair aside to achieve satisfactory scalp contact, as well as maintain low skin-electrode interface impedance. Results of this paper demonstrate that the proposed sensors perform well in the EEG measurements and are feasible for practical applications

    Development of metal-containing polymers for optoelectronic applications

    Get PDF
    Most of the work in organic electroluminescent polymers has been focused on organic conjugated polymers. However, polymers attached with transition metal complex have received relatively less attention. We have synthesized and studied the light emitting properties of some metal containing polymers based on the polypyridine complexes of rhenium and ruthenium. These complexes exhibit long-lived excited states caused by the metal to ligand charge transfer transitions. By varying the structure of the ligand and/or the transition metal, we are able to fine-tune the electronic properties of the resulting metal complexes.We have synthesized a series of poly(phenylenevinylene) (PPV) derivatives which are functionalized with ruthenium polypyridine complexes at the polymer mainchain or side chain. These complexes are able to act as photosensitizers which enhance the photoconductivity of these polymers at longer wavelength. Both the conjugatedbackbone and the metal complex can emit light upon excitation. As a result, it is possible to tune the color by loading different amount of ruthenium complex to the polymer. Luminescence studies showed that the ruthenium complex could quench the emission of the conjugated backbone in some polymers, which suggests an energy transfer processbetween the backbone and the metal complexes. It was also found that the presence of metal complexes could enhance the charge carrier mobilities of the polymers, as the metal and/or ligands can act as extra charge carriers in the charge transport process.published_or_final_versio

    New flexible silicone-based EEG dry sensor material compositions exhibiting improvements in lifespan, conductivity, and reliability

    Full text link
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors’ construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications

    An inflatable and wearable wireless system for making 32-channel electroencephalogram measurements

    Full text link
    © 2001-2011 IEEE. Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications

    Micromechanical analysis of kinematic hardening in natural clay

    Get PDF
    This paper presents a micromechanical analysis of the macroscopic behaviour of natural clay. A microstructural stress-strain model for clayey material has been developed which considers clay as a collection of clusters. The deformation of a representative volume of the material is generated by mobilizing and compressing all the clusters along their contact planes. Numerical simulations of multistage drained triaxial stress paths on Otaniemi clay have been performed and compared the numerical results to the experimental ones in order to validate the modelling approach. Then, the numerical results obtained at the microscopic level were analysed in order to explain the induced anisotropy observed in the clay behaviour at the macroscopic level. The evolution of the state variables at each contact plane during loading can explain the changes in shape and position in the stress space of the yield surface at the macroscopic level, as well as the rotation of the axes of anisotropy of the material

    Forehead EEG in Support of Future Feasible Personal Healthcare Solutions: Sleep Management, Headache Prevention, and Depression Treatment

    Get PDF
    © 2013 IEEE. There are current limitations in the recording technologies for measuring EEG activity in clinical and experimental applications. Acquisition systems involving wet electrodes are time-consuming and uncomfortable for the user. Furthermore, dehydration of the gel affects the quality of the acquired data and reliability of long-term monitoring. As a result, dry electrodes may be used to facilitate the transition from neuroscience research or clinical practice to real-life applications. EEG signals can be easily obtained using dry electrodes on the forehead, which provides extensive information concerning various cognitive dysfunctions and disorders. This paper presents the usefulness of the forehead EEG with advanced sensing technology and signal processing algorithms to support people with healthcare needs, such as monitoring sleep, predicting headaches, and treating depression. The proposed system for evaluating sleep quality is capable of identifying five sleep stages to track nightly sleep patterns. Additionally, people with episodic migraines can be notified of an imminent migraine headache hours in advance through monitoring forehead EEG dynamics. The depression treatment screening system can predict the efficacy of rapid antidepressant agents. It is evident that frontal EEG activity is critically involved in sleep management, headache prevention, and depression treatment. The use of dry electrodes on the forehead allows for easy and rapid monitoring on an everyday basis. The advances in EEG recording and analysis ensure a promising future in support of personal healthcare solutions

    Implementation and analysis of transmission services marginal pricing in a multi-area interconnected power system

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Efficient and Fast Synthesis of Few-Layer Black Phosphorus via Microwave-Assisted Liquid-Phase Exfoliation

    Full text link
    High‐quality, few‐layer black‐phosphorus (BP) flakes are prepared in a common organic solvent with very short processing times using microwave‐assisted liquid‐phase exfoliation. A comprehensive range of analysis, combined with density‐functional theory calculations, confirms that the product prepared using the microwave technique is few‐layer BP with small‐ and large‐area flakes. The suspended exfoliated BP sheets show excellent stability, while samples dispersed onto silicon from the suspensions exhibit low oxidation levels after several days in ambient conditions. This straightforward synthesis method is facile, efficient, and extremely fast, and does not involve use of any surfactant or ultrasonication steps and will facilitate future development of phosphorene research
    corecore